Table of Contents

1. Apsis

  • or apse. pl. apsides
  • From Greek, ἁψίς, 'arch, vault'

1.1. Apoapsis and Periapsis

Periapsis_apoapsis.png

Figure 1: apsis

  • The furthest and nearest point from a celestial body.

1.2. Named Apsides

  • Sun: Apohelion, Perihelion
  • Earth: Apogee, Perigee
  • : Apocenter, Pericenter (Sometimes, Apoapsis, Periapsis)

2. Kepler's Equation

\[ E = M - e\sin E \] where \( E \) is the , \( M \) is the mean anomaly, and \( e \) is the

2.1. Solutions

2.1.1. Using the Successive Approximation

Notice that \( E \) and \( M \) are the functions of time: \[ E(t) = t - e\sin E(t). \]

\( \sin E(t) \) can be expanded using the ../../math/calculus/Taylor Expansion.html: \[ \sin E(t) = \sin ( (E(t) - t) + t ) = \sin t + \cos t (E(t) - t) - \frac{1}{2} \sin t (E(t) - t)^2 - \cdots. \]

Include each term iteratively:

\begin{align*} E_0(t) &= t - e \sin t \\ E_1(t) &= t - e\sin t -e\cos (t) (E_0(t) - t) \\ &= t - e\sin t + \frac{e^2}{2}\sin 2t\\ E_2(t) & = t - e\sin t - e\cos(t) (E_1(t) - t) - \frac{1}{2}\sin (t) (E_1(t) - t)^2\\ \vdots \end{align*}

2.1.2. Using the Lagrange Inversion Theorem

\[ E = M + \sum_{n=1}^{\infty} \left[ \frac{1}{n!}\frac{d^{n-1}}{dM^{n-1}}\sin^{n}(M) \right] e^n \] where \( e \) is the eccentricity.

3. Syzygy

From Ancient Greek, συζυγία, 'union, yoking'

Straight-line configuration of three or more celestial bodies in a gravitational system. Occultations, transits, eclipses are main types of it. It can be subdivided into conjunction and opposition.

4. Analemma

From Ancient Greek ἀνάλημμα 'support'

The apparent locus of the Sun at identical mean solar time from a fixed location over a period of a year.

A figure 8 is formed.

5. References

Created: 2025-05-06 Tue 23:33