Units

Table of Contents

There is no unit in mathematics in the first place. By assigning units to quantities, you are endowing the quantity a physical significance. Therefore the physicality has to be taken into account thereon.

1. Commensurable

  • Two units are commensurable if they can added together.

2. Conversion Factor

  • A dimensionless number 1 that is a ratio of two measures.
    • e.g. \(1=100\, \mathrm{cm}/1\,\mathrm{m}\)
  • For incommensurable units, it depends on the context.
    • e.g. \(1=100\, \mathrm{km}/3\,\mathrm{h}\iff 100 \mathrm{km}=3\,\mathrm{h}\)
  • Degree, the unit of angle, can be thought of as a conversion factor.
    • \[^{\circ} =\frac{\pi}{180}\]

3. Common Units

3.1. SI Units

  • International System of Quantities (ISQ)

3.1.1. SI Base Units

  Quantity Dimension SI Base Unit
Length \(l\) \(\sf L\) \(\rm m\)
Mass \(m\) \(\sf M\) \(\rm kg\)
Time \(t\) \(\sf T\) \(\rm s\)
Electric Current \(I\) \(\sf I\) \(\rm A\)
Thermodynamic Temperature \(T\) \(\sf \Theta\) \(\rm K\)
Amount of Substance \(n\) \(\sf N\) \(\rm mol\)
Luminous Intensity \(I_\mathrm{v}\) \(\sf J\) \(\rm cd\)

3.1.2. SI Derived Units

Name Symbol
radian \(\rm rad\)
steradian \(\rm sr\)
hertz \(\rm Hz\)
newton \(\rm N\)
pascal \(\rm Pa\)
joule \(\rm J\)
watt \(\rm W\)
coulomb \(\rm C\)
volt \(\rm V\)
farad \(\rm F\)
ohm \(\Omega\)
siemens \(\rm S\)
weber \(\rm Wb\)
tesla \(\rm T\)
henry \(\rm H\)
degree Celsius \(\rm ^\circ C\)
lumen \(\rm lm\)
lux \(\rm lx\)
becquerel \(\rm Bq\)
gray \(\rm Gy\)
sievert \(\rm Sv\)
katal \(\rm kat\)
  Unit
Electric Field \(\rm V/m\)
Permittivity \(\rm F/m\)

3.1.3. Prefixes

Name Symbol Base 10 Factor
quetta \(\rm Q\) \(10^{30}\)
ronna \(\rm R\) \(10^{27}\)
yotta \(\rm Y\) \(10^{24}\)
zetta \(\rm Z\) \(10^{21}\)
exa \(\rm E\) \(10^{18}\)
peta \(\rm P\) \(10^{15}\)
tera \(\rm T\) \(10^{12}\)
giga \(\rm G\) \(10^{9}\)
mega \(\rm M\) \(10^{6}\)
kilo \(\rm k\) \(10^3\)
hecto \(\rm h\) \(10^2\)
deca \(\rm da\) \(10^1\)
\(\text{--}\) \(\text{--}\) \(1\)
deci \(\rm d\) \(10^{-1}\)
centi \(\rm c\) \(10^{-2}\)
milli \(\rm m\) \(10^{-3}\)
micro μ \(10^{-6}\)
nano \(\rm n\) \(10^{-9}\)
pico \(\rm p\) \(10^{-12}\)
femto \(\rm f\) \(10^{-15}\)
atto \(\rm a\) \(10^{-18}\)
zepto \(\rm z\) \(10^{-21}\)
yocto \(\rm y\) \(10^{-24}\)
ronto \(\rm r\) \(10^{-27}\)
quecto \(\rm q\) \(10^{-30}\)

3.2. Avoirdupois

USimperial.png

3.2.1. Yard

  • 0.9144 m

3.2.2. Mile

  • 1760 yards.
  • It originated from the different unit system, the Roman one.

3.2.3. Pound

  • 0.454 kg

3.2.4. Ounce

  • oz, oz.
  • Alchemical symbol for an ounce ℥, and half an ounce 🝳.
  • 28.34 g
  • 1/16 avoirdupois pound

3.2.5. Fluid Ounce

  • fl oz, fl. oz.
  • US Customary: 29.57 mL
  • US Food Labelling: 30 mL

3.2.6. Point

  • The definition may vary.
3.2.6.1. DTP
  • desktop publishing point
  • 1/72 of an inch, 1/12 of a pica.
  • 0.3528 mm.
3.2.6.2. New Didot Point
  • nd
  • 3/8 mm, or 0.375 mm.
3.2.6.3. American Point

3.2.7. Horsepower

  • Watt determined that a horse could turn a mill wheel 144 times in an hour, or 2.4 times in a minute. The wheel was 12 feet (3.7 m) in radius, and Watt judged that the horse could pull with a force of 180 pounds-force (800 N).
  • \[ 1\,\mathrm{hp} = 180\,\mathrm{lbf}\cdot 2.4\,\mathrm{turn/min}\cdot (2\pi\cdot 12)\,\mathrm{ft/turn} = 32,572\,\mathrm{ft\,lbf/min} \]
3.2.7.1. Imperial Horsepower
  • \(1\,\mathrm{hp} = 745.7\,\mathrm{W}\)
3.2.7.2. Metric Horsepower
  • 735.5 W

3.3. Level

3.3.1. Decibel

  • dB (base quantity) is the unit of the level.

\[ L = 10 \log \frac{Q}{Q_0}\ \mathrm{dB} \]

  • A reference unit can be provided so that the quantity have a unit.
3.3.1.1. dBm
  • decibel-milliwatts
3.3.1.2. Root-Power Quantity
  • Often used for voltage.
  • 20 is used.

3.3.2. Neper

  • Np
  • natural logarithm is used.

3.4. Information

3.4.1. Shannon

  • Log 2 of probability

3.4.2. Nat

  • Natural log of probability

4. Centimeter-Gram-Second System of Units

  • CGS Units, CGS, cgs

4.1. In Mechanics

Quantity Quantity Symbol Unit Name Unit Symbol Description
Acceleration \(a\) gal(galileo) \(\rm Gal\)  
Force \(F\) dyne \(\rm dyn\) From Greek, δύναμις, "power"
Energy \(E\) erg \(\rm erg\) From Greek, ἔργον, "work"
Pressure \(p\) barye \(\rm Ba\)  
Dynamic Viscosity \(\mu\) poise \(\rm P\) \(\rm cP\) is more common
Kinematic Viscosity \(\nu\) stokes \(\rm St\)  
Wavenumber \(k\) kayser \(\rm K\)  

4.2. In Electromagnetism

4.2.1. Electrostatic Units

  • ESU, CGS-ESU
4.2.1.1. Statcoulomb
  • \(\rm statC\)
    • 4.2.3.3.1, esu charge
    • ESU has smaller charge units and larger charge components.
    • a statcoulomb is equivalent to \( c \) times the abcoulomb.
4.2.1.2. Stattesla
  • \(\rm statT\)
  • It does not include the factor of \(c\), compared to 4.2.3.
  • \[ \mathbf{B}^{\sf ESU} := \sqrt{4\pi\varepsilon_0}\,\mathbf{B}^{\sf SI} \]
  • \[ \mathbf{F} = q^{\sf ESU}\mathbf{v}\times \mathbf{B}^{\sf ESU} \]

4.2.2. Electromagnetic Units

  • EMU, CGS-EMU
4.2.2.1. Abampere
  • Biot, emu current
  • \(\rm abA\), \(\rm Bi\)
  • \[ I^{\sf EMU} := \sqrt{\frac{\mu_0}{4\pi}} I^{\sf SI} = \frac{I^{\sf SI}}{c\sqrt{4\pi\varepsilon_0}} \]
  • For currents through two parallel conductors of infinite length, \[ \frac{F}{2} =\frac{I_1^{\sf EMU}I_2^{\sf EMU}}{r} \]
  • \[ \mathbf{B}^{\sf EMU} = \frac{I^{\sf EMU}d\mathbf{l}\times \mathbf{\hat{r}}}{r^2} \]
4.2.2.2. Gauss
  • \[ \mathbf{B}^{\sf EMU} = c\sqrt{4\pi\varepsilon_0}\,\mathbf{B}^{\sf SI} \]
  • EMU has smaller field units and larger field components.
  • a gauss is equivalent to e\( c \) times the 4.2.1.2.

4.2.3. Gaussian Units

  • CGS-Gaussian
  • Follows ESU for electricity and EMU for magnetism.
  • Gaussian Unit System, Gaussian-CGS Units, CGS Units

Conversion factors can be absorbed into the unit itself.

4.2.3.1. Quantities
4.2.3.1.1. Charge
  • \[ q^\mathrm{G} := \frac{q^\mathrm{I}}{\sqrt{4\pi\varepsilon_0}} \]
  • It is so defined to simplify the Coulomb's law: \[ F = \frac{q_1^\mathrm{G}q_2^\mathrm{G}}{r^2} \]
  • The point is to express charge entirely from mass, length, and time:
    • \[ [\text{charge}] = \sf M^{1/2}L^{3/2}T^{-1}. \]
4.2.3.1.2. Electric Field
  • \[ \mathbf{E}^\text{G} := \sqrt{4\pi\varepsilon_0}\,\mathbf{E}^\text{I} \]
  • Motivatied by:
    • \[ \mathbf{E}^\mathrm{G} = \frac{q^\text{G}}{r^2}\mathbf{\hat{r}} = \frac{\mathbf{F}}{q^\mathrm{G}}. \]
4.2.3.1.3. Magnetic Field
  • It is defined to have the same dimension as the electric field.
  • The factor of \(c\) is absorbed into the unit of magnetic field.
  • \[ \mathbf{B}^\mathrm{G} = c\sqrt{4\pi\varepsilon_0}\,\mathbf{B}^\mathrm{I} = \sqrt{\frac{4\pi}{\mu_0}}\,\mathbf{B}^\mathrm{I} \]
4.2.3.2. Implication
  • Equations related to electromagnetism are adjusted accordingly.
  • \[ \mathbf{F} = q^\mathrm{G}\left(\mathbf{E}^\mathrm{G} + \frac{1}{c}\mathbf{v}\times \mathbf{B}^\mathrm{G}\right) \]
  • \[ \rho^\text{G} = \frac{\rho^\text{I}}{\sqrt{4\pi\varepsilon_0}} \]
  • \[ I^\mathrm{G} = \frac{I^\mathrm{I}}{\sqrt{4\pi\varepsilon_0}} \]
4.2.3.2.1. Maxwell's Equations
  • \[ \nabla\cdot \mathbf{E}^\text{G} = 4\pi \rho^\text{G} \]
  • \[ \nabla \cdot \mathbf{B}^\mathrm{G} = 0 \]
  • \[ \nabla\times \mathbf{E}^\mathrm{G} + \frac{1}{c} \frac{\partial \mathbf{B}^\mathrm{G}}{\partial t} = 0 \]
  • \[ \nabla\times \mathbf{B}^\mathrm{G} - \frac{1}{c}\frac{\partial \mathbf{E}^\mathbf{G}}{\partial t} = \frac{4\pi}{c}\mathbf{J}^\mathrm{G} \]
4.2.3.3. Units
  • Physicist's use of Gaussian units does not care too much whether it is cgs or not:
    • \[ \rm 1\ statC = 10^{-\frac{9}{2}}\ kg^{1/2}m^{3/2}s^{-1} = 10^{-\frac{9}{2}}\ C^G \]
    • \[ \rm C^G = \frac{C}{\sqrt{4\pi\varepsilon_0}} \]
4.2.3.3.1. Franklin
  • Unit of electric charge
  • \[ \rm Fr = cm^{3/2}g^{1/2}s^{-1} \]
  • Equivalent to the standard unit is the electrostatic unit: \[ 1\ \text{statC} := 1\ {\rm g^{1/2} cm^{3/2} s^{-1}} \]
    • \[ \rm dyn = g\,cm\,s^{-2} = \frac{statC^2}{cm^2} \]
4.2.3.3.2. Gauss
  • Unit of electric field or magnetic B field
  • Hence, Gaussian Units
  • \[ \rm G = cm^{-1/2}g^{1/2}s^{-1} = 10^{-\frac{1}{2}}\ m^{-1/2}kg^{1/2}s^{-1} \]
  • Note that the conversion factor from the SI is nicely canceled:
    • \[ \frac{\mathbf{B}^{\mathrm{G}}}{\mathbf{B}^\mathrm{I}} = \sqrt{\frac{4\pi}{\mu_0}} \approx \sqrt{\frac{4\pi}{4\pi\times 10^{-7}\ \mathrm{N/A^2}}} = 10^{\frac{7}{2}}\rm\ N^{-1/2}A = \frac{10^4\ G}{1\ T} \]

5. Natural Units

5.1. Planck Units

5.1.1. Quantities

  • Every quantities are scaled by the factor of plank quantities, yielding dimensionless quantities that corresponds to the normal quantities.
Name Expression
Plank length \(l_\text{P} = \sqrt{\dfrac{\hbar G}{c^3}}\)
Plank mass \(m_\text{P} = \sqrt{\dfrac{\hbar c}{G}}\)
Plank time \(t_\text{P} = \sqrt{\dfrac{\hbar G}{c^5}}\)
Plank temperature \(T_\text{P} = \sqrt{\dfrac{\hbar c^5}{Gk_\text{B}^2}}\)
Plank charge \(q_\text{P} = \sqrt{4\pi\varepsilon_0\hbar c}\ (k_\text{B} = 1)\quad\text{or}\quad \sqrt{\varepsilon_0\hbar c}\ (\varepsilon_0 = 1)\)

5.1.2. Units

  • The units can be thought of as the ratio to the Plank quantities.
    • e.g.
      • \[ [\text{length}] = \frac{\rm m}{l_\text{P}} \]

5.1.3. Implications

  • The effect is equivalent to setting \(c = G = \hbar = k_\text{B} = 1\)
  • \[ F = \frac{m_1m_2}{r^2} \]

5.2. Heaviside-Lorentz Units

5.2.1. Quantities

  • Only the \(\varepsilon_0\) is removed compared to the Gaussian units.
  • \[ q^{\sf HL} := \frac{q^{\sf SI}}{\sqrt{\varepsilon_0}} \]
  • \[ \mathbf{E}^{\sf HL} := \sqrt{\varepsilon_0}\,\mathbf{E}^{\sf SI} \]
  • \[ \mathbf{B}^{\sf HL} := c\sqrt{\varepsilon_0}\,\mathbf{B}^{\sf SI} = \frac{1}{\sqrt{\mu_0}}\mathbf{B}^{\sf SI} \]

5.3. Atomic Units

5.3.1. Quantities

  • Similar to Planck units, but set \(\hbar = e = m_\text{e} = 4\pi\varepsilon_0 = 1\).

6. Obscure Units

6.1. Airwatt

\( \rm AW, airW \)

The product of suction pressure (in Pascal) and air flow rate (in cubic meter per second): \[ P = p\cdot Q. \]

7. See Also

8. Reference

Footnotes:

Created: 2025-05-25 Sun 03:44